首页> 外文OA文献 >Novelty detection methods for online health monitoring and post data analysis of turbopumps
【2h】

Novelty detection methods for online health monitoring and post data analysis of turbopumps

机译:用于涡轮泵的在线健康监测和后期数据分析的新颖性检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As novelty detection works when only normal data are available, it is of considerable promise for health monitoring in cases lacking fault samples and prior knowledge. In this paper, two novelty detection methods are presented for health monitoring of turbopumps in large-scale liquid-propellant rocket engines. The first method is the adaptive Gaussian threshold model. This method is designed to monitor the vibration of the turbopumps online because it has minimal computational complexity and is easy for implementation in real time. The second method is the One-Class Support Vector Machine (OCSVM) which is developed for post analysis of historical vibration signals. Via post analysis the method not only confirms the online monitoring results but also provides diagnostic results so that faults from sensors are separated from those actually from the turbopumps. Both of these two methods are validated to be efficient for health monitoring of the turbopumps.
机译:当只有正常数据可用时,新颖性检测就会起作用,因此在缺乏故障样本和先验知识的情况下,对健康状况进行监视具有很大的希望。本文提出了两种新颖的检测方法,用于对大型液体推进剂火箭发动机的涡轮泵进行健康监测。第一种方法是自适应高斯阈值模型。该方法旨在在线监测涡轮泵的振动,因为它具有最小的计算复杂度并且易于实时实施。第二种方法是一类支持向量机(OCSVM),用于对历史振动信号进行后期分析。通过后期分析,该方法不仅可以确认在线监测结果,还可以提供诊断结果,从而将传感器故障与涡轮泵实际故障区分开。这两种方法均被验证对涡轮泵的健康状况监测有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号